jueves, 26 de agosto de 2010

Introducción a la cromatografía en columna


La cromatografía es una técnica que se emplea en el fraccionamiento de proteínas. Consiste en la aplicación de una muestra compleja de proteínas a una columna de cristal en la que se ha situado una matriz sólida porosa que está inmersa en el solvente. A continuación se bombea una gran cantidad de solvente a través de la columna. Las diferentes proteínas se van retrasando de manera distinta según sus interacciones con la matriz, por lo que pueden ser recogidas separadas a medida que son eluidas por el fondo de la columna. Según la matriz escogida, las proteínas se pueden separar de acuerdo a su carga, su hidrofobicidad, su tamañó o su capacidad de unirse a grupos químicos particulares. La pureza de las fracciones obtenidas se suele comprobar mediante la electroforesis en geles de poliacrilamida.



En toda cromatografía hablaremos de los siguientes términos :

• matriz de la columa. Sustancia que está empapada de solvente y que se empaqueta en la columna. También se denomina el lecho de la columna.

• longitud de la columna. Longitud del dispositivo en el que se empaqueta la columna. Es importante en algunos tipos de cromatografía como la de filtración en gel y poco importante en otras como la cromatografía de afinidad.

• volumen de la columna. Volumen total de gel que se empaqueta en una columna cromatográfica.

• volumen muerto de la columna. Cantidad de solvente que tiene que atravesar la columna para asegurar que se ha reemplazado completamente. Coincide con el volumen de solvente que sale de la columna desde que se aplica la muestra hasta que empieza a salir la primera proteína. En general, y dependiendo del tipo de cromatografía puede ser de 1 a varias veces el volumen de la columna.

• 'Run Throught'. Es, en columnas de intercambio iónico o de afinidad, el volumen de solvente más proteínas que atraviesa la columna sin quedar retenido en ella. Correspondería en el caso de la cromatografía de afinidad al volumen de solvente que contiene las proteínas no afines al ligando.

- arriba -

Tipos de cromatografía en columna

El principio de separación de la cromatografía es la aplicación de un criterio de separación a las proteínas que se desplazan a lo largo de una matriz sólida porosa. Este criterio de separación se basa en alguna propiedad que es diferentes entre las proteínas que se quieren separar : peso molecular, carga eléctrica, afinidad de una de ellas por alguna otra, etc... En función de cual sea el criterio de separación que se aplique diferenciamos tres tipos de cromatografía en columna :

cromatografía de intercambio iónico

La cromatografía de intercambio iónico se realiza sobre matrices que tienen una carga neta, positiva en el esquema. La carga de la matriz de la columna así como la carga de las proteínasmdependerá del pH del solvente y de su fuerza iónica (proporcional a la concentración de iones). En unas condiciones determinadas serán retenidas en la columna las proteínas que tengan una carga complementaria a la de la matriz del gel (las proteínas cargadas negativamente serán retenidas por una matriz cargada positivamente), siendo eluidas las restantes. Para eluir las proteínas retenidas se puede variar la carga iónica del solvente o su pH de forma que se alcance el punto isoeléctrico de la proteína de interés o el de la matriz, neutralizando de este modo la fuerza que retiene a las proteínas en la columna.



cromatografía de filtración en gel

La cromatografía de filtración en gel se realiza empleando unas matrices formadas por unas esferas porosas. El volumen de los poros es muy elevado y su diámetro está determinado. Cuando penetran en el lecho de la columna dos proteínas de tamaños tales que una penetra en los poros de las bolas de gel y la otra no, la primera se reparte entre el espacio entre las bolas y el interior de los poros, reduciéndose la concentración en la fase libre entre las bolas. La segunda proteína, por tamaño, sólo puede encontrarse entre las bolas. El flujo de solvente es más elevado entre las bolas que en el interior de los poros de éstas, por lo que el efecto neto es el de acelerar el desplazamiento de las proteínas de mayor peso molecular respecto al de las de menor peso molecular. En esta cromatografía se eluyen primero las proteínas mayores, y en segundo lugar las menores, y tiene una gran influencia en el resultado la longitud de la columna y el volumen de la misma. Columnas largas aseguran separaciones de mayor calidad. Empleando patrones de proteínas de peso molecular conocido se emplea para determinar el peso molecular de proteínas de tamaño desconocido.



cromatografía de afinidad y de inmunoafinidad

En la cromatografía de afinidad las bolas de gel que conforman el lecho de la columna presentan unido en su superficie un ligando, una molécula ante la que tiene afinidad una o más de las proteínas presentes en la mezcla a separar. Al atravesar la columna el ligando secuestra sobre la superficie de las bolas de gel la proteína afín, y deja pasar el resto. La elución de la proteína afín se puede conseguir modificando las propiedades de carga del ligando (variando el pH hasta alcanzar su punto isoléctrico, variando la fuerza iónica del solvente, etc...) con lo que se reduce la intensidad de la interacción hasta anularla.

La naturaleza del ligando es muy variada, puede ser un receptor (proteína) unido a las bolas, que seleccionará su/s ligando/s de una mezcla compleja, o el antígeno empleado en una inmunización el que recubre las bolas y que retendrá del suero del animal aquellos anticuerpos que lo reconocen (anticuerpos purificados por afinidad), o en el caso concreto de la inmunoafinidad el ligando que recubre las bolas son anticuerpos que retienen en la columna a aquellas proteínas que contienen los epítopos que reconocen.

En ocasiones la cromatografía de afinidad se realiza incubando el gel recubierto con el ligando directamente con la solución que contiene las proteínas a purificar. Posteriormente se empaqueta la columna y se procede a la elución, primero de las proteínas no unidas ('run throught') y posteriormente de las retenidas (eluido específico).

MÉTODOS DE SEPARACIÓN




Raramente se encuentran las sustancias puras en la Naturaleza sino en forma de mezclas, disoluciones y suspensiones.



Toda la materia podemos separarla de diferentes formas hasta llegar a sus componentes más simples. Estos métodos se clasifican según sus características y son:



Métodos de separación química: destruyen las sustancias originales



Los métodos químicos de separación son procesos en los que los compuestos químicos





se separan en elementos más sencillos. Estos métodos químicos se caracterizan por la necesidad de efectuar una reacción química previa a la separación.



Hay muchos métodos químicos de separación pero los más importantes y conocidos son por: Electrólisis y Gravimetrías.



Otros métodos son la descomposición térmica donde se sometre a un compuesto a una temperatura elevada hasta que se descompone en sus elementos o en otros compuestos más sencillos.



A diferencia de los métodos químicos, en los métodos físicos no se destruyen las sustancias.



ELECTRÓLISIS



La electrólisis es la producción de una reacción redox no espontánea, mediante el paso de una corriente eléctrica. Es por lo tanto el proceso inverso al que ocurre en una pila eléctrica y se lleva a cabo en un contenedor llamado cuba electrolítica. Un ejemplo sencillo es el de la electrólisis del agua, en la que el paso de corriente descompone este líquido en sus elementos constituyentes, hidrógeno y oxígeno.



Es uno de los principales métodos químicos de separación. La principal ventaja del método electrolítico es que no es necesario aumentar la temperatura para que la reacción tenga lugar, evitándose pérdidas energéticas y reacciones secundarias. Industrialmente es uno de los procesos más empleados en diferentes áreas, como la obtención de elementos a partir de compuestos (cloro, hidrógeno, oxígeno), la purificación de metales (el mineral metálico se disuelve en ácido, obteniéndose por electrólisis el metal puro) o la realización de recubrimientos metálicos protectores y/o embellecedores (niquelado, cromado, etc.).



GRAVIMETRÍAS



Por gravimetría se entiende la separación de un componente de una disolución líquida mediante su precipitación a través de una reacción química. La sustancia que se desea obtener reacciona con otra sustancia química, de forma que el resultado de la reacción es un producto sólido que precipita por gravedad en el fondo de la disolución y puede ser separado de ella por métodos físicos.



EJEMPLO:



En separación de la plata de una disolución de nitrato de plata, se somete esta sustancia a reacción con ácido clorhídrico, obteniéndose un precipitado blanco de cloruro de plata insoluble.



Métodos de separación física: no destruyen las sustancias originales



MÉTODOS FÍSICOS DE SEPARACIÓN



Los métodos utilizados para la separación de mezclas y de disoluciones utilizan como base las propiedades físicas y químicas de los componentes de estas.A diferencia de éstos en los métodos químicos sí se destruyen las sustancias. Son los siguientes:



CRISTALIZACIÓN



Este método se utiliza para separar una mezcla de sólidos que sean solubles en el mismo disolvente pero con curvas de solubilidad diferentes. Una vez que la mezcla esté disuelta, puede calentarse para evaporar parte de disolvente y así concentrar la disolución. Para el compuesto menos soluble la disolución llegará a la saturación debido a la eliminación de parte del disolvente y precipitará. Todo esto puede irse procediendo sucesivamente e ir disolviendo de nuevo los distintos precipitados (esto recibiría el nombre de cristalización fraccionada) obtenidos para irlos purificando hasta conseguir separar totalmente los dos sólidos.



Cada nueva cristalización tiene un rendimiento menor, pero con este método puede alcanzarse el grado de pureza que se desee. Normalmente, cuando se quieren separar impurezas de un material, como su concentración es baja la única sustancia que llega a saturación es la deseada y el precipitado es prácticamente puro.



La cristalización es el proceso inverso de la disolución.



- Filtración



FILTRACIÓN



En la filtración, se hace pasar la mezcla por filtros de distintos tamaños, en los que quedan retenidas las partículas de mayor tamaño que los poros del filtro. Es un método sencillo y barato; sólo es útil en algunas situaciones.



Es uno de los métodos más simples de separación física, que no altera las propiedades de las sustancias que intervienen.



DESTILACIÓN



La destilación y la destilación fraccionada es el método utilizado cuando se quieren separar dos líquidos y uno de ellos es más volátil que el otro. Es también útil cuando ambos líquidos tengan temperaturas de ebullición parecidas. Cuando calentamos la mezcla el vapor que aparece está compuesto en mayor porcentaje por el líquido más volátil. Se recoge el vapor y se enfría, obteniéndose un líquido de concentración distinta al original. La mezcla inicial ha cambiado también de composición y por tanto también de punto de ebullición.



La destilación fraccionada se utiliza cuando combinamos distintas destilaciones, y con esto puede conseguirse que sólo quede líquido menos volátil y evaporar completamente (y volver a condensar) el más volátil.



CROMATOGRAFÍA



La cromatografía se utiliza con los fluidos, que pueden ser gases o líquidos, se empuja a circular la mezcla por un sólido o un líquido que permanece estacionario (fase estacionaria). Los distintos componentes de la mezcla circulan a velocidades diferentes por la fase estacionaria, y por lo tanto unos componentes están más tiempo retenidos en ella que otros, emergiendo después. Sirve como método físico de separación.



La fase estacionaria puede ser típicamente un sólido poroso como la celulosa, o como el gel. Las moléculas de menor tamaño pueden cruzar todos los poros e invierten más tiempo en el recorrido mientras que las moléculas mayores de la mezcla no “ pierden tiempo” en los poros, emergiendo más rápidamente.



CENTRIFUGACIÓN



Se habla de centrifugación cuando tenemos partículas de distinto tamaño en un medio acuoso, éstas sedimentan hacia el fondo a una velocidad que depende de su peso. Este efecto podría utilizarse para separar componentes de distinto peso si no fuera porque las velocidades de sedimentación son pequeñísimas, por lo que el sistema no es útil.



Así, pues lo que se hace es aumentar dichas velocidades de sedimentación haciendo girar muy rápidamente la mezcla. En este caso, la fuerza centrípeta hace el papel de la gravedad (peso) y puede ser mucho mayor que éste haciendo girar muy rápido la mezcla: este es el principio de la centrifugación y de la ultracentrifugación. Se coloca la mezcla en un aparato que la haga girar a velocidad angular constante muy elevada.



Una vez está girando, la mezcla experimenta una aceleración centrípeta que puede llegar a ser, en ultracentrifugadoras de laboratorio, unas 500000 veces la aceleración de la gravedad.



Esta fuerza empuja a sedimentar, a distinta velocidad, a las partículas de distinta masa de la mezcla, creándose distintos estratos con las partículas de cada clase. Este método es muy utilizado en biología y medicina.